计算说明(本节列出脚本中用于计算与检验的公式与步骤,便于复现):

1) 概率估计
   - 观测计数 A_i 为某类别的观测次数,总试验次数为 N(或在两类比较中为 m = A + B)。
   - 类别的估计概率: p_hat = A / N (若只比较两类,则条件概率 p_hat = A / m)。

2) Wilson 置信区间(用于单个类别概率的置信区间,双侧)
   - 给定显著性水平 alpha(双侧),先计算 z = Phi^{-1}(1 - alpha/2)。
   - 设 p_hat = A / N,
     denom = 1 + z^2 / N
     center = p_hat + z^2 / (2N)
     rad = z * sqrt( p_hat*(1-p_hat)/N + z^2/(4N^2) )
     下界 lower = (center - rad) / denom
     上界 upper = (center + rad) / denom
   - 区间被截断到 [0,1]。

3) 两类显著性比较(用于判断 A > B)
   - 只看落在 A 或 B 的样本,令 m = A + B。
   - 在原假设 H0: p_A = p_B(条件下 p = 0.5)下,A ~ Binomial(m, 0.5)。
   - 使用精确二项检验(binomtest)做单侧检验:H1: p_A > 0.5(即 A 的条件概率大于 B)。
   - 得到单侧 p_value(脚本中称为原始 p_value)。

4) 多重比较校正(组内 Bonferroni)
   - 在同一组(例如门组或某方向子组)内做所有两两比较,若组内共有 T 个两两比较,
     则每次检验的显著性阈值设为 alpha_per_test = overall_alpha / T(overall_alpha 默认为 0.05)。
   - 仅当单侧 p_value <= alpha_per_test 时,记录显著结论 A>B(或 B>A)。

5) 差值与效应量(使用总样本 N 作为分母)
   - 在两类比较中,差值定义为:
       diff_total = (A/N) - (B/N),其中 N 为总样本量。
   - 这样差值直接反映在总样本中的概率差异,便于与“误差 ≤1%(按 N 分母)”规则对齐。
   - 在结论页中,差值单元格按以下规则着色:
       <1% → 灰色;1%~2% → 黄色;≥2% → 绿色。

6) 方向比较限制(脚本实现细节)
   - 方向分为两组:直角组 = {Left, Up, Right, Down};斜角组 = {Up-Left, Up-Right, Down-Right, Down-Left}。
   - 仅在组内做两两比较,不跨组比较。

7) 概率统计表(概率统计页)
   - 每个类别的概率由原始计数除以 Total 得到:Door_X = Door_X_count / Total;Dir_Y = Dir_Y_count / Total。

8) 均值/方差/标准差(均值偏差页)
   - 组内均值(例如门组): mean = mean(p_i)(忽略为 0 的项以避免 Total=0 的影响)。
   - 以百分比形式计算偏差列: (p_i - mean) * 100。
   - 方差(%^2)使用样本方差(ddof=0),标准差为方差的平方根(%)。

本页(结论-门)说明:
 - 对每个实验,门组内共有 4 个类别,共 T = C(4,2) = 6 个两两比较。
 - 使用 overall_alpha = 0.05,组内 Bonferroni 校正后 alpha_per_test = 0.05 / 6 ≈ 0.008333。
 - 每条结论为单侧精确二项检验显著的比较,格式: 实验编号 | 结论 | p_value | A_count | B_count | 差值(pA-pB, N分母)。
实验编号 结论 p_value A_count B_count 差值(pA-pB, N分母)
1c Left>Up 1.97431E-07 9934 9231 0.022817
1c Right>Up 8.41497E-10 10069 9231 0.027198
1c Down>Up 2.31261E-06 9865 9231 0.020577
1d Left>Up 4.28907E-10 9984 9135 0.027555
1d Right>Up 1.9109E-10 10002 9135 0.028139
1d Down>Up 7.30425E-09 9918 9135 0.025413
3 Right>Up 0.008240385 9867 9532 0.010873
3 Down>Up 0.001506482 9947 9532 0.013469
3a Right>Up 0.000944416 9973 9538 0.014118
3b Right>Up 0.001531367 9885 9472 0.013404
3b Down>Up 0.000244547 9959 9472 0.015806
3c Up>Left 2.62409E-08 10237 9472 0.024829
3c Up>Right 6.58233E-06 10237 9622 0.01996
3c Up>Down 0.000129704 10237 9720 0.01678
3d Left>Down 0.003969214 9952 9580 0.012074
3d Right>Down 0.001893013 9986 9580 0.013177
5 Left>Up 0 12583 0 0.408393
5 Left>Down 1.06938E-70 12583 9924 0.0863
5 Right>Up 0 12591 0 0.408653
5 Down>Up 0 9924 0 0.322093
5 Right>Down 4.36106E-71 12591 9924 0.08656
5a Left>Up 0 12650 0 0.410568
5a Left>Down 1.54996E-76 12650 9879 0.089935
5a Right>Up 0 12611 0 0.409302
5a Down>Up 0 9879 0 0.320632
5a Right>Down 1.4083E-74 12611 9879 0.08867
5b Left>Up 0 12626 0 0.409789
5b Left>Down 5.32961E-70 12626 9975 0.086041
5b Right>Up 0 12493 0 0.405472
5b Down>Up 0 9975 0 0.323748
5b Right>Down 1.03918E-63 12493 9975 0.081724
7 Up>Right 0.000348174 9883 9411 0.015319
7b Up>Right 0.000905251 9895 9460 0.014118